
Evaluating Software

Evaluating Software:
What Thoreau Said to the Designer

Paul Taylor

Successful software development is often the result of collabora-
tion among a variety of individuals with different skills and interests.
For the past seven years, I have worked with such a group to produce
a number of computer programs for use in college-level English class-
rooms. As a member of this group, I have always considered my
primary contribution to be software design and programming. Al-
though I am an active teacher and researcher in the field of rhetoric and
computers, my direct technical experience tends to slant my thinking
about educational software. I will rely on my colleagues to consider in
greater detail specific pedagogical and rhetorical guidelines for evalu-
ating educational software; the following suggestions focus primarily
on interface and usability. In fact, some of these guidelines may appear
to have relatively little to do with academics, but educational programs
cannot be effective while ignoring the general principles of software
design. Good educational software must first be good software.

Theoretical Focus
The most important criterion for evaluating software is its theoreti-

cal focus. Like a book or an essay, a computer program should
constitute a coherent text within a consistent theoretical framework.

46 Computers and Composition VoL I0, No. 1

A single program cannot do everything for everyone, but it can define
a specific purpose and provide tools for achieving that purpose. Natu-
rally, some educators will use software in ways never intended by the
authors, just as they modify rhetorical and pedagogical theories to the
particular constraints of their,own teaching situations. But a coherent
theoretical statement--in software as well as prose--at least provides
a clear point of departure.

The theoretical focus of a computer program inheres in both its
form and its content. All programs have some kind of conteht--
minimally instructions and explanations, if not also more extensive
textual, aural, and visual resources. However, this content alone does
not constitute the program's theoretical stance. Each program manages
the users' actions by establishing possible and recommended opera-
tions. The range of permissible actions should be consistent with the
program's theoretical orientation. For example, software implement-
ing a collaborative pedagogy should avoid features that give instruc-
tors special powers and thereby undermine attempts to foster a stu-
dent-centered learning environment.

A c t i o n

A computer program should allow and encourage users to take
actions. A program that simply displays information] (even if the in-
formation appears in an elaborate multi-media environment) offers
no clear advantage over a library. This is not to say that programs
cannot or should not be rich in content; on the contrary, on-line
resources can significantly enhance learning. It is important, though,
that a program provide powerful and flexible ways for users to interact
with the information. Search mechanisms (including artificially intel-
ligent agents) make it possible to bypass the software's organization
and acces s information in ways relevant to the user's particular needs.
Various authoring tools allow an individual to reshape the program's
information into alternate structures. Cut-and-paste commands enable
a user to transfer information out of the program and into the user's
larger working environment.

These are only a few minimal features important for making an
informational database genuinely useful; many other kinds of pro-
grams support a much broader range of actions. But any program can
easily fall into the trap of passive presentation at some point. Particu-
larly problematic are software designs that force the user to follow a
prescribed sequence. Such sequences range from the merely aggravat-
ing (title screens with sound or animation that cannot be interrupted)
to the genuinely misguided (tutorials that lock the user into a linear

What Thoreau Said to the Designer 47

series of screens). Not only do these passive presentations make
relatively poor use of the computer 's capabilities but they also imply
that the user is not very bright and has nothing better to do. Educational
software should be a tool that empowers users to accomplish tasks
external to the particular computer program.

Management of Complexity
Computer systems are capable of making accessible a tremendous

amount of information as well as many different options for working
with the information. It is easy for users to become lost in megabytes
of textual information and dozens of program commands. Of course,
post-industrial society in general has not found a solution to the
problem of information overload, and there is no right way to deal with
complexity in the specific medium of computer software. But good
software provides some means to make sense of the complexity. Per-
haps most important is consistency in the interface, a point developed
in greater detail below. Other approaches include hierarchies, modifi-
able levels of expertise, intelligent query mechanisms, and hypertextual
structures.

Hierarchical representations can provide a traditional and com-
fortable means of simplifying complexity. Most program menus ar-
range commands hierarchically; some programs also provide hierar-
chical structures for content, such as an outliner that expands or
collapses to show a topic at different levels of detail. A few programs
offer menu systems that similarly expand or contract a4cording to the
user's needs; beginners can use simple menus that show only the most
essential operations, while experienced users can select advanced
menus that provide more sophisticated features.

Nonhierarchical representations also may help users to manage
complexity. Intelligent searches through textual information offer not
just a simple string match ("find all the occurrences of the word tax"),
but a more sophisticated analysis of content ("find all the rcmarks made
by the President's staff regarding the Congressional tax bill"). Such
queries enable a user to bring together information that might not be
correlated within a hierarchical organization. Another nonhierarchical
solution is the use of hypertext, which provides multilinear links
between different texts and images. Hypertext makes explicit the
multiplicity of relationships attached to any individual word, phrase,
sound, or image; in so doing, it provides a guide to at least some of the
connections interwoven within a body of information.

Different programs obviously work with different kinds of infor-
mation; some (word-processing and coifferencing software, for

48 Computers and Composition VoL I0, No. 1

example) depend almost exclusively on text produced by the users,
whereas others (on-line handbooks and tutorials) incorporate exten-
sive predetermined content. Some kinds of software require an elabo-
rate command structure, whereas others offer only a few basic options.
But all programs need to provide tools for managing complexity--
especially software designed for students, whose knowledge and abili-
ties can be expected to change as they use the software.

Consistency
The usability of a program depend s significantly on the consistency

of its interface. At the very least, a program can be internally consistent.
Specialized function keys should perform the same actions throughout
the program; one key should not perform two unrelated actions at
different times in the same program. Colors, fonts, icons, and locations
can be employed consistently to help the user understand different
screens easily. For example, Whenever the user is expected to write text,
the program might provide a blue editing field located at the bottom of
the screen or active window; instructions could always appear in white
at the top of the screen.

In addition to internal consistency, it is important that a program
conform to the external standards established by other software. Of
course, standards for software are still evolving because the field is
relatively new, and there would be no improvements without devia-
tions from current practices. Nevertheless, a tremendous amount of
research has gone into designing effective user inter faces; software that
ignores these standards not only rejects the cumulative experience of
successful software designers, but also places an extra burden on the
users to learn an unfamiliar command structure. One well-known
example of the role of standards is the QWERTY keyboard. The letters
on modern keyboards originally were arranged to slow down typists in
order to avoid jamming mechanical typewriters; alternate keyboard
layouts have been proven to allow much faster typing now that jammed
keys are largely irrelevant--but the greater efficiency comes at the cost
of retraining everyone who learned to type on the QWERTY keyboard.
Although the current keyboard layout is antiquated, it serves as a
standard that enables typists to move easily from one system to another.

Similarly, software standards enable users to learn new programs
quickly and integrate them into their other activities. Several features
are likely to remain central to software produced in the next decade,
including pull-down menus, dialog boxes, icons, and moveable, resizable
windows. Often these elements are described collectively as a Graphi-
cal User Interface (GUI) because they were pioneered in a graphics

What Thoreau Said to the Designer 49

environment, which can provide attractive visual details such as three-
dimensional shadowing underneath buttons. It is important to note,
however, that the essential functionality can be realized without fine-
grained graphical decoration and even without a mouse, which is
frequently assumed to be an integral part of a GUI. All programs can
implement the basic features of a menu-driven interface.

In addition to screen designs, alternative input and output devices
are increasingly important. The mouse is now standard on most.new
microcomputers, and other devices are becoming more widely imple-
mented. Software certainly should provide mouse support, and for-
ward-looking designs also will respond to touch screens, light pens,
and voice commands. Of course, it is difficult to predict which new
technologies will flourish---ten years ago it might have seemed like a
good idea for all software to support joysticks. Nevertheless, these
alternative technologies open up the possibility that all users may find
new, more efficient ways to interact with computers. In addition, they
make computers more accessible to people with disabilities. As these
devices become standardized, software will be expected to integrate
them into the interface.

Many other minor conventions establish uniformity within a pro-
gram: The ESC key cancels a request orbacksup a step, F l provides on-
line help, "File" and "Edit" options are grouped together in a prominent
position on the menu. Such details are too numerous to list completely;
furthermore, they may change as new techniques are developed. In the
end, recognizing whether a program effectively observes conventions
requires the evaluator to become familiar with a broad range of com-
mercial and educational software.

C o n n e c t i v i t y

With the possible exception of games, most software is not an end
in itself. Computer programs should be considered not as self-con-
tained systems, but specialized components within a larger suite of
computer-based activities. ~ Each program needs to be able to transfer
information in and out of its own workspace; specifically, the program
should allow the user to connect to other programs, other information
databases, and other users. The simplest level of communication
between programs is a text-only transfer; for example, a student might
use a heuristic program to explore a topic, save the work as a text-only
file, and then import the prewriting into a word-processing program for
possible incorporation into an essay. Although this simple level of
interprogram communication is essential, it is not enough in an era of
computer-based documents that may easily include various type styles,

50 Computers and Composition VoL 10, No. 1

graphics, sounds, and video clips. Programs can facilitate more com-
plex transfers by observing appropriate standards for storing flontext
information. In addition, individual programs can tie into resources
provided by the computer's operating system. Although the specific
technology will change, two current examples are the "Publish-and-
Subscribe" feature of the Macintosh System 7 operating system and the
"Dynamic Data Exchange" protocol available in Microsoft WL~DOWS 3.0;
both of these features enable different programs to share complex
information--as long as the programs have been written to take advan-
tage of the resource.

Software also can enhance information exchanges by recognizing
and utilizing network services. As more computers become attached to
local and wide area networks, it becomes increasingly important for
programs to avoid technical conflicts with network software and to
provide various "hooks" to network capabilities. Networks can give
access to diverse information databases and also link users who may
collaborate formally or casually. Programs that recognize these poten-
tial connections can smooth the process of gathering and distributing
information and cooperating on shared tasks.

Feedback
Good software lets the user know what is going on. When the user

presses a key, clicks a mouse button, o r provides some other kind of
input, the program should respond immediately.. Any action that
cannot update the display immediately should provide an intermedi-
ate indication that something is happening--at least through a simple
message or cursor change. Longer processes should provide some kind
of indicator to show the progress on the action--for instance, a graph or
number showing the percentage of the task completed.

Other displays can help the user keep track of current operations
and opportunities. For example, communications software can list the
names of everyone currently active in an electronic conference. Infor-
mation systems can keep track of previous search terms and provide,
visual maps to help orient the user within a web of textual connections.
Every program can list existing files when saving or retrieving--
preferably distinguishing between files created by the program and all
other files. Of course, the trick is to make all this information easily
available without cluttering the screen and overwhelming the user.

What Thoreau Said to the Designer 51

F l e x i b i l i t y

Educational software should be flexible from the perspective of
both the instructor and the student. For the instructor, flexibility means
that the program's content and default appearance can be changed.
Tutorials, drills, heuristics, and even on-line reference works all need to
provide simple, reliable mechanisms for the teacher to modify existing
content and insert new content. New content should not simply replace
the original text (unless the instructor chooses to do so); the software
should be designed to incorporate additional material clearly and
seamlessly. Ideally, all text that appears in the program should be
modifiable so the teacher can customize it for different languages and
knowledge levels.

For individual students, software should provide the flexibility to
customize the display and control the sequence of events. Each user
should be able to establish personal preferences regarding screen
colors, fonts, sound levels, printers, locations of personal files, and
levels of expertise. In a network environment, where many individuals
may run a single copy of a program, the software should ensure that one
individual's preferences can be stored without losing the preferences of
other users. Although it is possible for students to waste time playing
with these options, the freedom to personalize the program can help
them to create a more productive environment. For visually impaired
users, the ability to change colors and fonts--for all text that appears on
the screen, not just text produced by the user---can makethe difference
between a valuable application and a waste of time.

The users" control of the environment also should extend to the
sequence of events in a program. With a few exceptions (such as some
specialized testing procedures), software should generally give the
user the ability to choose where to go next, including a simple return to
the previous step. If a program presents information in a timed
sequence, the user should be able to modify the speed of the presenta-
tion. It should be easy to stop at any point in a program, save work in
progress, and resume later at precisely the same point where the user
previously quit. Flexibility and user control properly place the primary
focus on the person rather than the software.

As students sit down to face a new computer program, they may
wistfully recall Thoreau's exhortation to "simplicity, simplicity, sim-
plicity!" Feature-laden programs enable users to take advantage of a
wide range of resources, including network connectivity, multimedia
information, and tools for restructuring information--but such power
sometimes comes at the price of a high learning curve. In order to be

52 Computers and Composition VoL 10, No. 1

usable in the classroom, software must manage the complexity it
creates; it should be internally and externally consistent, and it should
be flexible enough to provide individual users different ways of simpli-
fying the environment. Even more important than usability, however,
is the way in which a program is integrated into the curriculum.
Although an u~to-date interface is vital to any application, it does not
automatically make good software any more than a book printed on
acid-free recycled paper makes good scholarship. Theoretical focus
remains the primary concern; in evaluating software, instructors must
understand what the program is designed to do and determine how
that purpose fits into the larger goals for the students in the classroom.

1.

Note
I use the term information to refer to text, sound, and graphics that maybe
accessible through a computer program. That term seems rather dry, as if
it referred to technical specifications for a computer chip or an airplane's
landing gear. Actually, I am borrowing the word from information theory,
pioneered by Claude Shannon in the 1940s. Early work in information
theory explicitly separated information from meaning; Shannon and oth-
ers were not addressing epistemology, but the transmission of data.
However, the field has grown to consider how meaning arises and changes
through the relationship between a message (the text/sound/data sent by
an author) and the accompanying "noise" (the unexpected, the ambigu-
ous, the context). Both the message and the noise constitute information,
and a mixture of the two provides the greatest information. Recently,
research in chaos theory has suggested that noise in a'message can cause
the system to self-organize at a higher level; thus the disorder and uncer-
tainty are not extraneous distractions, but integral to the creation of
meaning. It is this notion of complexity in symbolic communication that
leads me to use the term information.

Paul Taylor is an Assistant Professor of English at Texas A&M
University in College Station, Texas.

